Dental implants require sufficient bone to be adequately stabilised. For some patients, implant treatment would not be an option without horizontal or vertical bone augmentation. Therefore, general bone augmentation is an area of immense importance in implantology.

A variety of materials and surgical techniques are available for bone augmentation, depending on the case and patient – after all, each case is different.

One option is a block graft, a bone augmentation technique ideally suited for simply building up bone matter. Firstly, the area to be augmented is measured and then cortical blocks are harvested from either the chin or the ramus of the mandible. First the area to be augmented is measured. After raising a flap from the donor site, a block is cut either by using peizo-surgical instrument or by drilling small holes to trace the outline of the block. A fissure bur then links these and the block is separated from the underlying bone using chisels.

The donor site can be filled with collagen sponges to aid healing, before being sutured. On the host site, the cortical plate is perforated numerous times to promote bleeding using small diamond burs. The block is then shaped using larger burs to fill the void and follow the curve of the dip. Small holes are drilled through the block and the cortical plate to allow for a screw to secure the block in place.

Particulate bone can be used around the block and a resorbable membrane draped over the graft. This is left for at least six months before implant placement.

Non-resorbable membranes

A more tricky technique is to use non-resorbable membranes to build up the bone mass. The use of these membranes is technique sensitive and in inexperienced hands can easily lead to failures, resulting in the removal of grafts.

Generally there are two types of commonly used membranes. One of which is titanium reinforced, while the other is not. In areas of augmentation, xenografts alone with these membranes cannot be used. In my experience, although the ridge will augment, the quality of bone formed is very poor and unsuitable for implant placement.

It is therefore important to mix autogenous bone and xenografts together with an equal ratio to achieve better results. The autogenous bone can be taken from the tuberosity or ramus and crushed.

The World’s First Online

MSc in Restorative & Aesthetic Dentistry

Two of the UK’s most respected education and academic organisations have joined forces to provide an innovative, technology driven MSc in Restorative and Aesthetic Dentistry. Smile-on, the UK’s pre-eminent healthcare education provider and the University of Manchester, one of the top twenty-five universities in the world, have had the prescience to collaborate in providing students with the best of everything – lecturers, online technology, live sessions and support.

Master of Science in

Restorative & Aesthetic Dentistry

‘The Best of Everything’

Convenience

The majority of the learning resources on this programme will be online. The masters will combine interactive distance learning, webinars, live learning and print.

Ownership

The programme is designed to encourage the student to take responsibility for his/her own learning. The emphasis is on a self-directed learning approach.

Community

Students will be able to communicate with a diverse multi-ethnic global community of peers, with who they will also share residential get-togethers in fantastic settings around the world.

Opportunity

This innovative programme establishes the academic and clinical parameters and standards for restorative and aesthetic dentistry. Students will leave with a world recognised MSc.

Online | Face to Face | Hands-on | Together
using a bone mill. Safe scrapers can also be used to harvest a large volume of manageable bone. The host site is prepared in the same way as for the block graft by perforating the cortical plate. The bone is placed over the void and over contoured. The membrane is then cut into the desired shape and tacked into position. This stage is very important to prevent movement and exposure.

A tension-free flap is then sutured over the graft, and left to heal for at least six months before the membrane is removed – a vital stage in all augmentation cases. The periostium at the base of the flap can be scored using a scalpel to allow for greater flexibility.

Alternatively, ridge augmentation can also be achieved using resorbable membranes. An example would be a severely atrophic posterior ridge. Once the cortical plate is perforated, a mixture of autogenous bone and particulate bovine bone can be mixed and placed onto the atrophic ridge. A resorbable membrane can then be secured over the augmented area and left for a period of six months.

Demineralised Bone Matrix
A relatively new concept to enter the arena is the use of Demineralised Bone Matrix (DBM). Al-